环装热图绘制相关性
mat1 = rbind(cbind(matrix(rnorm(50*5, mean = 1), nr = 50),
matrix(rnorm(50*5, mean = -1), nr = 50)),
cbind(matrix(rnorm(50*5, mean = -1), nr = 50),
matrix(rnorm(50*5, mean = 1), nr = 50))
)
rownames(mat1) = paste0("R", 1:100)
colnames(mat1) = paste0("C", 1:10)
mat1 = mat1[sample(100, 100), ]
library(circlize)
library(ComplexHeatmap)
col_fun1 = colorRamp2(c(-2, 0, 2), c("navy", "white", "firebrick3"))
circos.heatmap(mat1, col = col_fun1,dend.side = "inside",rownames.side = "outside")
lgd = Legend(title = "mat1", col_fun = col_fun1)
grid.draw(lgd)
circos.clear()
col_fun1 = colorRamp2(c(-2, 0, 2), c("navy", "white", "firebrick3"))
circos.par(gap.after = c(10))
circos.heatmap(mat1, col = col_fun1,dend.side = "inside",rownames.side = "outside",track.height = 0.4)
circos.track(track.index = get.current.track.index(), panel.fun = function(x, y) {
if(CELL_META$sector.numeric.index == 1) {
cn = colnames(mat1)
n = length(cn)
circos.text(rep(CELL_META$cell.xlim[2], n) + convert_x(0.1, "mm"),
13+(1:n)*5,
cn,
cex = 0.5, adj = c(0, 1), facing = "inside")
}
}, bg.border = NA)
lgd = Legend(title = "mat1", col_fun = col_fun1)
grid.draw(lgd)
circos.clear()
mat2 = mat1[sample(100, 100), ]
col_fun1 = colorRamp2(c(-2, 0, 2), c("navy", "white", "firebrick3"))
col_fun2 = colorRamp2(c(-2, 0, 2), c("green", "white", "red"))
circos.par(gap.after = c(10))
circos.heatmap(mat1, col = col_fun1,rownames.side = "outside",track.height = 0.2)
circos.heatmap(mat2, col = col_fun2,dend.side = "inside",track.height = 0.2)
lgd = Legend(title = "mat1", col_fun = col_fun1)
grid.draw(lgd)
circos.clear()
使用弦图绘制相关性
tt <- raster::stack(list.files("D:/XH/third_env/tt",pattern = "tif",full.names = T))
sa_exx <- na.exclude(raster::raster::extract(tt,xh_sa[,2:3]))
as_exx <- na.exclude(raster::raster::extract(tt,xh_as[,2:3]))
au_exx <- na.exclude(raster::raster::extract(tt,xh_au[,2:3]))
na_exx <- na.exclude(raster::raster::extract(tt,xh_na[,2:3]))
p_sa <- cor(sa_exx,method = "pearson")
p_as <- cor(as_exx,method = "pearson")
p_au <- cor(au_exx,method = "pearson")
p_na <- cor(na_exx,method = "pearson")
diag(p_sa) <- 0
pp_sa <- reshape2::melt(p_sa)
pp_sa1 <- pp_sa %>% .[which(.$value>=0.8 ),]
pp_sa2 <- pp_sa %>% .[which(.$value<=-0.8 ),]
pp_sa <- data.frame(rbind(pp_sa1,pp_sa2))
diag(p_au) <- 0
pp_au <- reshape2::melt(p_au)
pp_au1 <- pp_au %>% .[which(.$value>=0.8 ),]
pp_au2 <- pp_au %>% .[which(.$value<=-0.8 ),]
pp_au <- data.frame(rbind(pp_au1,pp_au2))
diag(p_as) <- 0
pp_as <- reshape2::melt(p_as)
pp_as1 <- pp_as %>% .[which(.$value>=0.8 ),]
pp_as2 <- pp_as %>% .[which(.$value<=-0.8 ),]
pp_as <- data.frame(rbind(pp_as1,pp_as2))
diag(p_na) <- 0
pp_na <- reshape2::melt(p_na)
pp_na1 <- pp_na %>% .[which(.$value>=0.8 ),]
pp_na2 <- pp_na %>% .[which(.$value<=-0.8 ),]
pp_na <- data.frame(rbind(pp_na1,pp_na2))
library(circlize)
plot(0,type='n',axes=FALSE,ann=FALSE)
par(mfrow =c(2,2))
chordDiagram(pp_sa,
annotationTrack = c('grid', 'name'),
col = colorRamp2(c(-1,-0.8, 0,0.8, 1), c('blue', 'gray88','gray88','gray88', 'red'), transparency = 0),
annotationTrackHeight = c(0.05, 0.05),
symmetric = FALSE,link.sort = FALSE,
title("SA_Alternanthera philoxeroides_ENVS_PEARSON", cex = 0.8))
chordDiagram(pp_as,
annotationTrack = c('grid', 'name'),
col = colorRamp2(c(-1,-0.8, 0,0.8, 1), c('blue', 'gray88','gray88','gray88', 'red'), transparency = 0),
annotationTrackHeight = c(0.05, 0.05),
symmetric = FALSE,link.sort = FALSE,
title("AS_Alternanthera philoxeroides_ENVS_PEARSON", cex = 0.8))
chordDiagram(pp_au,
annotationTrack = c('grid', 'name'),
col = colorRamp2(c(-1,-0.8, 0,0.8, 1), c('blue', 'gray88','gray88','gray88', 'red'), transparency = 0),
annotationTrackHeight = c(0.05, 0.05),
symmetric = FALSE,link.sort = FALSE,
title("AU_Alternanthera philoxeroides_ENVS_PEARSON", cex = 0.8))
chordDiagram(pp_na,
annotationTrack = c('grid', 'name'),
col = colorRamp2(c(-1,-0.8, 0,0.8, 1), c('blue', 'gray88','gray88','gray88', 'red'), transparency = 0),
annotationTrackHeight = c(0.05, 0.05),
symmetric = FALSE,link.sort = FALSE,
title("NA_Alternanthera philoxeroides_ENVS_PEARSON", cex = 0.8))
jk_all <- data.frame(jk_au,jk_na,jk_as)
write.csv(jk_sa,"C:/Users/admin/Desktop/jk_sa.csv")
write.csv(jk_all,"C:/Users/admin/Desktop/jk_all.csv")
lm相关性统计
library(basicTrendline)
enm <- raster::extract(ped_as,xh_as[,2:3])
biox <- as.data.frame(raster::extract(envs_as,xh_as[,2:3]))
bioxx <- data.frame(cbind(biox,enm))
nam <- names(envs_as)
names(bioxx)
par(mfrow =c(3,4))
for(i in 1:11){
trendline(biox[,i], enm, model="line2P", ePos.x = NA, summary=TRUE, eDigit=5,main=nam[i],xlab = "")
}
lattice包-splom(df)
library(lattice)
splom(df)